GLUT1 enhances mTOR activity independently of TSC2 and AMPK.

نویسندگان

  • Carolyn L Buller
  • Charles W Heilig
  • Frank C Brosius
چکیده

Enhanced GLUT1 expression in mesangial cells plays an important role in the development of diabetic nephropathy by stimulating signaling through several pathways resulting in increased glomerular matrix accumulation. Similarly, enhanced mammalian target of rapamycin (mTOR) activation has been implicated in mesangial matrix expansion and glomerular hypertrophy in diabetes. We sought to examine whether enhanced GLUT1 expression increased mTOR activity and, if so, to identify the mechanism. We found that levels of GLUT1 expression and mTOR activation, as evidenced by S6 kinase (S6K) and 4E-BP-1 phosphorylation, changed in tandem in cell lines exposed to elevated levels of extracellular glucose. We then showed that increased GLUT1 expression enhanced S6K phosphorylation by 1.7- to 2.9-fold in cultured mesangial cells and in glomeruli from GLUT1 transgenic mice. Treatment with the mTOR inhibitor, rapamycin, eliminated the GLUT1 effect on S6K phosphorylation. In cells lacking functional tuberous sclerosis complex (TSC) 2, GLUT1 effects on mTOR activity persisted, indicating that GLUT1 effects were not mediated by TSC. Similarly, AMP kinase activity was not altered by enhanced GLUT1 expression. Conversely, enhanced GLUT1 expression led to a 2.4-fold increase in binding of mTOR to its activator, Rheb, and a commensurate 2.1-fold decrease in binding of Rheb to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) consistent with mediation of GLUT1 effects by a metabolic effect on GAPDH. Thus, GLUT1 expression appears to augment mesangial cell growth and matrix protein accumulation via effects on glycolysis and decreased GAPDH interaction with Rheb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression.

Glucose transport is a highly regulated process and is dependent on a variety of signaling events. Glycogen synthase kinase-3 (GSK-3) has been implicated in various aspects of the regulation of glucose transport, but the mechanisms by which GSK-3 activity affects glucose uptake have not been well defined. We report that basal glycogen synthase kinase-3 (GSK-3) activity regulates glucose transpo...

متن کامل

TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival

Mutations in either the TSC1 or TSC2 tumor suppressor gene are responsible for Tuberous Sclerosis Complex. The gene products of TSC1 and TSC2 form a functional complex and inhibit the phosphorylation of S6K and 4EBP1, two key regulators of translation. Here, we describe that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway. Under en...

متن کامل

Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.

Mammalian target of rapamycin (mTOR) is a central regulator of protein synthesis whose activity is modulated by a variety of signals. Energy depletion and hypoxia result in mTOR inhibition. While energy depletion inhibits mTOR through a process involving the activation of AMP-activated protein kinase (AMPK) by LKB1 and subsequent phosphorylation of TSC2, the mechanism of mTOR inhibition by hypo...

متن کامل

Dissection and integration of the autophagy signaling network initiated by bluetongue virus infection: crucial candidates ERK1/2, Akt and AMPK

Bluetongue virus (BTV), a complex double-stranded segmented RNA virus, has been found to initiate cellular autophagy for its own benefit. Here, with a view to understanding the underlying mechanisms, we first systematically dissected the exact signaling network in BTV-induced autophagy. We found that the activity of mTOR, a crucial pivot, was inhibited by BTV1 infection, subsequently leading to...

متن کامل

p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb.

UNLABELLED The activity of mammalian target of rapamycin complex 1 (mTORC1) is frequently enhanced in carcinomas, an effect thought to contribute to the malignant phenotype. Here, it is demonstrated that either deletion or mutation of TP53 in colon or lung carcinoma cells substantially enhances mTORC1 kinase activity by an effect downstream of and independent of AMPK. Mechanistically, it was de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 301 3  شماره 

صفحات  -

تاریخ انتشار 2011